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1 The Schrödinger Equation, the Uncertainty Principle, and
Oscillatory Integrals

1.1 Fundamental solution of the Schrödinger equation

Recall the heat equation
(∂t −∆)u = f in Rt × Rnx.

This has fundamental solution

K(t, x) =
1

(4πt)n/2
e−x

2/(4t)
1{t≥0}.

This is the unique temperate distribution for the heat equation.
We also have the Schrödinger equation

(i∂t + ∆)u = f in R× Rn.

Unlike the heat equation, this equation fundamentally has complex-valued solutions. This
is the fundamental PDE in quantum mechanics, where u(t) is interpreted as the state of
a particle at time t in a probabilistic sense as follows: ‖u‖L2 = 1, and |u|2 is viewed as a
probability distribution. In particular,

P(p ∈ E) =

∫
E
|u|2 dx,

where p can be the position of a particle. In this picture, the Fourier transform also plays
a role. Here, |û|2 is the probability density of the velocity of the particle. Plancherel’s
theorem tells us that ‖û‖L2 = 1, as well.

Let P (τ, ξ) = τ−ξ2. Then the fundamental solution to the Schrödinger equation should
be K = F−1( 1

τ−ξ2 ). The issue is that τ − ξ2 has an entire parabola worth of zeroes. How
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do we think of 1
τ−ξ2 as a distribution? If we just view this as a distribution in the variable

τ , this is like the distribution 1
x , which gives a few different ways to think of it:

1

−τ − ξ − i0
,

1

−τ − ξ2 + i0
, PV

1

−τ − ξ2
.

Note that these first two solutions indicate that the Schrödinger equation, unlike the heat
equation, can be run backwards in time. How do we pick one of these options? We might
want to look for a solution that looks like it’s moving forward in time: suppK ⊆ {t ≥ 0}.
This implies that K̂ should have a holomorphic extension in the lower half-plane. Then
our forward fundamental solution is

K(t, x) = F−1
(

1

−τ − ξ2 − i0

)
.

First, we will take the Fourier transform with respect to τ . That ξ = 0, this gives H(t).
Recall that F−1δ0 = 1, and F−1δξ0 = eixξ0 . This is a general rule for the Fourier transform

of the translation of a distirbution, so when ξ 6= 0, we get K(t, ξ) = H(t)e−iξ
2t.

Alternatively, take only a spatial Fourier transform of the Schrödinger equation{
(i∂t + ∆)u = 0

u(0) = u0 = δ0(u)

to get {
(i∂t + ξ2)û(ξ) = 0

û(0) = 1.

This gives û(ξ) = eitξ
2
, so u = F−1(e−itξ2). Recall that F(e−ξ

2/2 = e−x
2/2 and more

generally that Fe−λξ2/2 = 1
λn/2 e

−x2/(2λ) for λ ∈ R+.

Extend this to complex λ. For what complex λ is 1
λn/2 e

−x2/(2λ) a temperate distribu-

tion? This is the right half plane {λ : Reλ ≥ 0}. For Reλ > 0, the function e−λξ
2/2 is

analytic with values in S. This tells us that its Fourier transform is analytic for Reλ > 0
and we can uniquely extend it to an analytic function on {Reλ > 0}. What about when
Reλ = 0? As λ = it + ε → it, e−(it+ε)ξ/2 → e−itξ

2/2 in S, i.e. in the topology of tem-
perate distributions. So the Fourier transforms converge in the same sense. Thus, we get
fundamental solution

K(t, x) =
1

(4πit)n/2
eix

2/(4t)
1{t≥0}.

Remark 1.1. Note that û(t, ξ) = eitξû0(ξ), which means that

|û(t, ξ)| = |u0(ξ)| =⇒ ‖û(t)‖L2 = ‖u0‖L2 .

So |û| remains a probability distribution for all time t ≥ 0.
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1.2 The uncertainty principle

Cane we closely predict both position and velocity? Can we have suppu ⊆ I and supp û ⊆ J
for compactly supported intervals I, J? The answer is no. If suppu is compact, then û is
analytic. So u must be 0.

Let’s try to localize our particle at x = 0, ξ = 0. Let

(δx)2 =

∫
|u|2(x) · x2 dx

be the mean square deviation from 0. We can do the same for velocity to get

(δξ)2 =

∫
|û|2(ξ) · ξ2 dξ.

Is there a function u ∈ L2 with ‖u‖L2 = 1 such that δx and δξ are simultaneously small?
This is not possible. Observe that

δx = ‖x · u‖L2 ,

while Plancherel’s theorem tells us that

δξ = ‖ξ · û‖L2 = ‖∂xu‖L2

We can compute the inner product

Re

∫
xu · ∂xu dx =

∫
x · 1

2
∂x|u|2︸ ︷︷ ︸

u∂xu+u∂xu

dx

Now integrate by parts to get

= −
∫
n

2
|u|2 dx

= −n
2
‖u‖2L2 .

So we conclude that

‖u‖2L2 = −2nRe〈xu, ∂xu〉L2

≤ 2n‖xu‖L2‖∂xu‖L2 .

So we get the following:

Theorem 1.1 (Uncertainty principle).

δx · δξ ≥ 1

2n
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This says that we cannot know the position of an electron without sacrificing informa-
tion about its velocity. In physics, people write the Schrödinger equation as i∂t+c∆u = f ,
where c is a constant involving ~, Planck’s constant. This gives the following physically
normalized version of the uncertainty principle:

δx · δξ ≥ ~
2n

1.3 Oscillatory integrals and the KdV equation

We have seen the integral
∫
eitξ

2
eix·ξ. Can we compute the more general integral

∫
eiλϕ(ξ) dξ,

where ϕ is a phase function? How does this integral behave as λ→∞? Let us make the
following observation in 1 dimension.

Proposition 1.1. If ϕ′ 6= 0, then for any N ,∫
eiλϕ(ξ)a(ξ) dξ = o(λ−N ).

This is called an oscillatory integral.

Proof. Suppose ϕ′ 6= 0. Then localize to a compact set with a function a and integrate by
parts: ∫

eiλϕ(ξ)a(ξ) =

∫
ϕ′eiλϕ · a

ϕ′
dξ

=
i

λ

∫
eiλϕ(ξ)∂ξ

(
a

ϕ′

)
dξ,

so we have gained a factor of 1/λ. Now repeat this.

The conclusion is that the main contribution comes from the critical points of ϕ. The
study of oscillatory integrals via their critical points is called the method of stationary
phase.1 From the perspective of PDEs, we want to use oscillatory integrals to compute
asymptotic expansions of fundamental solutions which are not explicit.

Example 1.1 (KdV equation2). The KdV equation is

(∂t + ∂3x)u = 0.

1This is an important topic in harmonic analysis, and people have spent their whole careers studying
oscillatory integrals.

2This is short for Korteweg-de Vries.
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It describes unidirectional waves in a canal.

If you want to make this a linear equation, we can consider the case where this equals 6uux.
Let’s compute a fundamental solution. We want to compute the inverse Fourier transform
of 1

τ−ξ3 . For a forward fundamental solution, we want

K = F−1
(

1

τ − ξ3 − i0

)
.

We have
K(t, ξ) = eitξ

3

If we take the Fourier transform in time, we get K(t, ξ) = eitξ
3
. So now we want to take

the integral ∫
ei(tξ

3+xξ) dξ

The solution will not be an algebraic function; instead, it will be something we label as a
“special function,” the Airy function. In particular, F−1(eiξ3) = Ai(x).

Let’s try to compute the asymptotic behavior. The phase is ϕ(ξ) = tξ3 + xξ. The
critical points are when

3tξ2 + x = 0 =⇒ ξ2 = − x
3t
.

This has roots only when x < 0, which is why this equation only gives waves in 1 direction.
We get two critical points:

ξ1 =

√
− x

3t
, ξ2 =

√
− x

3t

At each critical point, replace the cubic polynomial with a quadratic polynomial which is
the Taylor series of the polynomial, and take the Fourier transform like with our analysis
of the Schrödinger equation.
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